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PREFACE

In the past decade, great interest has been generated concerning the use
of photoacoustical devices, so-called spectrophones, for measuring small
absorption coefficients of trace gases and relatively large concentra-
tions of particulate matter in the atmosphere. This interest is
well-justified because of the wide applicability of spectrophones in
such fields as laser communications, high energy laser propagation,
electro-optical sensing instrumentation, and detection of atmospheric
pollutants. For high energy laser systems, absorption of radiation can
be extremely variable, depending upon the media through which the beam
is being transmitted (for instance, fog, dust, haze, or smoke environ-
ment). Atmospheric conditions may result in complete or partial obscu-
ration of the emitted laser wavelengths. Effects such as thermal
blooming of the laser beam are based on accurate absorption calcula-
tions. For electro-optical systems, proper characterization of common
atmospheric gases and particulates is important. Target ranging, laser
guidance, target designation, and forward looking infrared devices are
highly dependent upon the transmission losses due to these common atmo-
spheric gaseous and particulate constituents. For detection of ato-
spheric pollutants, atmospheric coefficients of the constituent gases
and/or particulates of interest (such as ozone and various industrial
and vehicular pollutants) must be known before the concentration levels
are deduced. In this report we shall demonstrate the applicability of
the spectrophone for measuring absorption coefficients of gases as well
as dust particulates in laboratory and field environments by using CO2
and DF laser sources.
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INTRODUCTION

Since the advent of laser-sourced spectrophone systems by Kerr and
Attwood' to measure gaseous absorption, the technique has been improved
considerably for measuring ultralow gas concentrations in the laboratory
(Dewey, 2 Kreutzer,l Deaton et al,' and Bruce et all). In addition to
gaseous measurements, the versatility of the spectrophone has led to
characterizing ground particulates in the laboratory (Bruce and
Pinnick6 ). Inherent in both types of measurements is an acoustically
resonant cell in which standing sound waves are produced to enhance the
spectrophone's low absorption signals and to suppress the amplifier
noise level by way of phase-locking the amplified signal with the laser
chopping frequency. In this manner absorption sensitivities as low as
0.001 km-1 for trace atmospheric pollutants have been observed
(Adamowicz and Koo'). Other spectrophone systems have made use of laser
light sources with the added advantages of high power densities and high

1E. L. Kerr and J. G. Attwood, 1968, "The Laser Illuminated Absorptivity
Spectrophone: A Method for Measurement of Weak Absorptivity in Gases at
Laser Wavelengths," Appl Opt, 7:915

2C. F. Dewey, Jr., R. D. Kamm, and C. E. Hackett, 1973, "Acoustic
Amplifier for Detection of Atmospheric Pollutants," Appl Phys Letters,
23:623

3L. B. Kreutzer, 1971, "Ultralow Gas Concentration Infrared Absorption
Spectroscopy," J Appl Phys, 42:2934

'T. F. Deaton, D. A. Depatie, and T. W. Wallser, 1975, "Absorption
Coefficient Measurements of Nitrous Oxide and Methane at DF Laser
Wavelengths," Appl Phys Letters, 26:300

5C. W. Bruce, 1976, Development of Spectrophones for CW and Pulsed
Radiation Sources, R&D Technical Report, ECOM-5802, US Army Electronics
Command, Atmospheric Sciences Laboratory, White Sands Missile Range, NM.

6C. W. Bruce and R. G. Pinnick, 1977, "In Situ Measurements of Aerosol
Absorption with a Resonant CW Laser Spectrophone," App Opt, 16:762-65

7R. F. Adamowicz and K. P. Koo, 1979, "Characteristics of a
Photoacoustic Air Pollution Detector at C02 Laser Frequencies,"A

Opt, 18:2938
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spectral resolution to measure liquids and solids (Rosencwaig 8  and
Harshbarger and Robin').

This report describes two techniques for absorption measurements of
field atmospheric gases and dust particulates. The first technique uses
a state-of-the-art Atmospheric Sciences Laboratory (ASL) developed
spectrophone with an acoustically isolated microphone which 3ssentially
eliminates the "window" noise problem. The first on-line/off-line gas
analysis was conducted at Oscura Peak, White Sands Missile Range (WSMR),
New Mexico, and its main purpose was to measure atmospheric absorption
spectra and deduce gas concentrations at field sites. The second
technique employed a specially designed flow through spectrophone system
in which the dust particles were slowly drawn through the resonant
cavity of a vertically mounted spectrophone. In the Former technique
the ambient gases were sampled by stainless cylinders at the field site
and then cryogenically transported to the laboratory for analysis. The
latter technique for atmospheric gas and dust measurements was used in
situ at the Arky Site, WSMR. Both systems operate at CO2 laser
frequencies from the 9- to 11-mLcrometer IR region. The gas measuring
system also used a dputerium fluoride (DF) laser source from 3.5 to 4.1
micrometers to obtain on-line/off-line field gas concentrations for
water vapor, N2 0, and CH4 . Experimental procedures and results of the
field gas and dust tests are discussed. Correlated results with
meteorological measured parameters and theoretical absorption
calculations based upon commercial Knollenberg particle size
distributions are included in the analysis. Recommended improvements
for further tests are also reported.

SPECIALLY DESIGNED SPECTROPHONES FOR FIELD OPERATIONS

ASL developed spectrophones (Bruce ) were used for these field tests.
Basic to these spectrophone designs is an acoustically isolated micro-
phone. The microphone's inner cavity, shown in figure 1, utilizes
radially acoustical waves into which longitudinally resonant modes are
generated. The microphone's diaphragm is made of a gold-coated mylar
sheet and is inserted into an inner stainless steel tube. Narrow mylar
strips between diaphragm and tube act as spacers and provide resilience

'A. Rosencwaig, 1973, "Photoacoustic Spectroscopy of Biological
Material," Science, 181:657

'W. R. Harshbarger and M. B. Robin, 1973, "Opto-AcoustLc Effect:
Revival of an Old Technique for Molecular Spectroscopy," Accounts of
Chemical Research, 6:329

sC. W. Bruce, 1976, Development of Spectrophones for CW and Pulsed
Radiation Sources, R&D Technical Report, ECOK-5802, US Army Electronics
Command, Atmospheric Sciences Laboratory, White Sands Missile Range, NM
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diaphragm which comprises the inside electrode surface; the stainless
steel tube forms the outside electrode of the capacitance microphone.
The cylindrical teflon carrier provides acoustical and electrical isola-
tion from extraneous noises. For the gaseous portion of the measure-
ments, the gaseous absorption signals within the microphone must be
isolated from the "window" absorption signal. This isolation is accom-
plished by inserting the microphone unit (resonant subcavity) into a
long outer cylinder whose end windows are spaced well away from the
apertures of the inner resonant subcylinder. This provided the desired
losses by misphasing and dispersing the unwanted signals. Further
isolation is provided by conical teflon acoustical filters, placed
between the microphone ends and the end BaF 2 windows of the outer alumi-
C2
num casing. For flow through dust measurements (figure 2) the end BaF
windows are removed and a vacuum line connection is made on the side o"
the aluminum casing near the bottom of the spectrophone. The dust
particles enter the spectrophone's subcavity at the top and are drawn
through the central aperture. The inner diameter of the microphone and
acoustic filters was designed to match the intake aperture on the alumi-
num casing (double open ended organ pipe type microphone5 ). This was to
insure as nearly laminar aerosol flow as possible. Spectrophones with
lerge inner resonant cavities can cause divergent and turbulent flow
through the microphone cell allowing alteration of particle densities
with passage through the microphone cavity. Another improvement in
construction of the dust spectrophone was to place the microphone unit
near the top of the aluminum casing to minimize the losses due to impac-
tion of the large particles due to orthogonal wind velocity components
near the intake.

Signal processing for the CW source spectrophone is shown in figure 3
and is based on the use of phase sensitive detection to create a very
narrow noise bandwidth. Signal processing for both CW and pulsed
sources is discussed in more detail in reference 5.

For the measurements discussed here, either a Sylvania 950 cw CO2 laser
source or a Lumonics pulsed DF laser source is used. The CO2 laser can
be tuned to about 80 spectral lines within the 9- to 11-micrometer
window region. The DF laser has a total of about 30 fixed lines ranging
from 3.5 to 4.1 micrometers.

The following discussion reviews the ASL measurements of various atmo-
spheric gases and common particulates fouud in the natural environ-
ment. The current efforts to characterize atmospheric gases and
particulates in the field are also discussed.

'C. W. Bruce, 1976, Development of Spectrophones for CW and Pulsed
Radiation Sources, R&D Technical Report, ECOM-5802, US Army Electronics
Command, Atmospheric Sciences Laboratory, White Sands Missile Range, NM.
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LABORATIORY MEASUR34ENTS WITH THE SPECTROPHONE UNITS

Both gaseous and particle spectrophones as previously described were
extensively used under controlled laboratory conditions before being
adapted to field measurements (figure 4). Early methane absorption
studies at DF laser frequencies using a pulsed source spectrophone, for
example, show relatively consistent spectral profile with various White
(multipass transmission) cell results (Bruce et al ') and Spencer's 1 1

White cell measurements. The same measurements disagreed strongly with
the then current AFCRL [now Air Force Geophysics Laboratory (AFGL)]
predictions of McClatchey et al" and with measurements of Deaton et
al.4  Differences of the normalized values range from 3 to 13 percent
with no apparent trends with amplitude of absorption value or -

frequency. The AFUL. line-by-line predictive values, generally much
lower than the other referenced values, were later revised and are now
in good agreement with the ASL values. During this same period, ozone
measurements for sea level and simulated higher altitudes were conducted
using the optical setup shown in figure 5. A tiny UV lamp within the
spectrophone housing was used to generate the equilibrium concentration
of ozone (about 1 to 10 ppm). Figure 6 schematically shows details of
the cooled ozone spectrophone. The laser output power was measured
using a calorimeter and the spectrophone cuntainer was insulated to
stabilize the temperature of the system to -701C. 71ables 1 and 2
compare ASL spectrophone absorption coefficients for 9-micrometer COf
laser lines with those of the AFGL, 1 1 the White cell results of Patty,'?

and the Jet Propulsion Laboratory (JPL) values in km-I/ppm for T = 300 K
and T 210 K for various pressures. Pattern comparison shows very

'*C. W. Bruce, B. Z. Sojka, B. G. Hurd, W. R. Watkins, K. 0. White, and
Z. Derzko, 1976, "Application of Pulsed-Source Spectrophone to
Absorption by Methane at DF Laser Wavelengths," Appl Opt, 15:2970

11 D. J. Spencer, G. C. DeNault, and H. H. Tahimoto, 1974, Technical
Report SAMSO-TR-74-7, Space and Missile Systems Organization, Los
Angeles Air Force Station, CA

"2 R. A. MlClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F.

Calfee, K. Fox, L. S. Rothman, and J. S. Garing, 1973, Technical Report
AFCRL-TR-73-0096, Air Force Cambridge Research Laboratories (presently
Air Force Geophysics Laboratory), Hanscom Air Force Base, MA

'T. F. Deaton, D. A. Depatie, and T. W. Wallser, 1975, "Absorption
Coefficient Measurements of Nitrous Oxide and Methane at DF Laser
Wavelengths," Appl Phys Letters, 26:300

S1 R. R. Patty, G. M. Russurm, W. A. McClenny, and D. R. Morgan, 1974,
"CO2 Laser Absorption Coefficients for Determining Ambient Lec'els of 03,
NH3 , and CH4 ," Appl Opt, 13:2850
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TABLE 1. OZONE ABSORPTION COEFFICIENTS FOR ASL SPECTROPHONE
MEASUREMENTS, AFGL LINE-BY-LINE PREDICTi. PATTY'S
VALUES, AND/OR JPL VALUES AT 9-MICROMETER CO2 LASER LINES

Absorption Values at T - 300 K for Pressures of 1.0, 0.35, and 0.18 ata

Ozone Absorption Coefficients (ppm-km)- 1

p - 1.0 atm p - 0.35 atm p - 0.18 abm
CO.

Lines ASL AFGL Patty JPL ASL AFGL ASL AFGL

P-6 0.811 0.200 0.063

P-8 1.09 0.455 0.298

P-10 0.624 0.63 0.134 0.044

P-12 1.24 0.953 1.22 1.17 0.511 0.423 0.297

P-14 1.20 1.09 1.27 1.24 0.352 0.296 0.146 0.101

P-16 0.934 0.771 0.90 0.87 0.192 0.203 0.0556 0.065

P-l8 0.642 0.514 0.64 0.57 0.259 0.193 0.146 0.0957

P-20 0.479 0.365 0.55 0.42 0.160 0.101 0.0569 0.0412

P-22 0.201 0.228 0.18 0.16 0.0454 0.0435 0.0101 0.0135

P-24 0.074 0.066 0.07 0.03 0.0226 0.0167 0.0081 0.0070

P-26 0.626 0.527 0.60 0.142 0.150 0.0351 0.0595

P-28 0.945 0.713 0.94 0.344 0.293 0.157 0.153

P-30 0.644 0.551 0.64 0.236 0.217 0.177 0.126

P-32 0.565 0.468 0.59 0.158 0.168 0.0546 0.0848

P-34 0.369 0.339 0.30 0.101 0.088 0.0719 0.0483

P-36 0.742 0.550 0.67 0.320 0.266 0.114 0.170

P-38 0.632 0.429 0.345 0.283

P-40 0.496 0.125 0.049

15



TABLE 2. OZONE ABSORPTION COEFFICIENTS FOR ASL SPECTROPHONE
MEASUREMENTS, AFGL LINE-BY-LINE PREDICTIONS, PATTY'S
VALUES AND/OR JPL VALUES AT 9-MICROMETER CO2 LASER LINES

Absorption Values in (plr-Im)-I at T - 210 I for Pressures of 1.0, 0.35, and 0.18 ams

CO2  p 1.0 am p - 0.35 atm p - 0.18 atm

Lines ASL AFUL ASL AFGL ASL AFGL

P-6 1.25 1.05 0.292 0.0825

P-8 1.74 1.59 0.635 0.398

P-1O 1.03 1.01 0.216 0.0675

P-12 2.03 1.65 0.763 0.702 0.466

P-14 2.28 1.99. 0.709 0.560 0.209 0.198 -

P-16 1.68 1.57 0.495 0.460 0.0721 0.162

P-18 1.09 1.00 0.526 0.363 0.295 0.1P2

P-20 0.815 0.749 0.280 0,213 0.065 0.0910

P-22 0.360 0.489 0.0936 0.0937 0.0289 0.0285

P-24 0.116 0.108 0.0375 0.0256 0.0211 0.0106

P-26 1.11 1.11 0.386 0.332 0.135 0.142

P-28 1.46 1.19 0.699 0.513 0.274 0.223

P-30 0.911 0.826 0.362 0.290 0.429 0.167

P-32 0.847 0.694 0.249 0.217 0.0863 0.0955

J P-34 0.587 0.625 0.128 0.127 0.0751 0.0543

P-36 1.05 1.00 0.516 0.485 0.286 0.285

P-38 1.43 1.14 0.625 0.510

P-40 0.973 0.913 0.218 0.0835
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close agreement with the results of Patty, which were used for
calibration of the spectrophone. The spectrophone measurements were
then exteried to pressures and temperatures unsuitable for White cell

measurements since White cells are limited by their bulkiness and
sensitivities. For a majority of the CO2 laser lines, the ASL
spectrophone values are slightly higher (about 15 percent) than the AFGL
values. However, the agreement is still closer than most comparisons
between published values. Differences become more pronounced at lower
pressures, possibly because the predictive models (Lorentz line shapes
assumed) are inexact and/or the input parameters cannot be accurately
extrapolated to markedly different atmospheric conditions.

Recent spectrophone measurements of ammonia (NH3 ) by Brewer" have been
completed for 9- and 10-micrometer CO2 laser wavelengths. The ASL
spectrophone measurement program was focused at resolving disagreements
in published ammonia absorption values. The ammonia was buffered with
N to 1 atmosphere at 295 K. The absorption coefficients at 77 laser
lines are tabulated (table 3) and 95 percent of these coefficients range
between 3 to 20 percent probable errors for single measurements. Once
again pattern agreement with that of measurements by Patty et all' is
quite good through the amplitudes span several orders of magnitude. The
values given in table 3 are generally within 15 percent of Patty's
values with the exception of the 10-micrometer R branch; the White cell
technique used by Patty resulted in a consistent overestimation of the
very low absorptions present. The following is an example of the impor-
tance of verifying absorption coefficients: the values obtained by
another group (Mayer") have a claimed accuracy of +5 percent for all
lines having coefficients greater than 1O-km-n/ppm and has stated that

S its results are in good agreement with those of Patty. However, the
absorption at the P(18) line in the 9-micrometer CO2 emission band is a

*� factor of 10 higher than that reported by Patty and a comparison of the
remaining results does not substantiate the statement that the two
groups' results are (for ammonia) in agreement since the average ratio
between the two sets is 2.6.

For the particulate measurement portion of ASL's tests, known dust
particles were finely ground and then uniformly dispersed into an envi-:1 ronmental chamber. The general procedure to characterize the absorption

"1R. J. Brewer and C. W. Bruce, 1979, "Photoacoustic Spectroscopy of NH3
at the 9-micrometer and 10-micrometer CO2 Laser Wavelengths," Appl Opt,
17:3746

" R. R. Patty, G. M. Russurm, W. A. McClenny, and D. R. Morgan, 1974,
"CO2 Laser Absorption Coefficients for Determining Ambient Levels of 03,
NH3 , and CH4 ," Appl Opt, 13:2850

"5 A. Mayer, J. Comera, H. Charpentier, and C. Jassaud, 1978, Appl Opt,
17:391
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TABLE 3. ABSORPTION COEFFICIENTS OF NH3 (295 K, 1 ATM)

00'1-02*0 CO2 Band O0 1-10'0 CO2 Band

Spectral um Coefficienis Errora Pm Coefficients Errora
Line (air) (ppm-km)' (*%) (air) (ppm-km)-l (*)

f'40) 9.171 0.170 4.0 10.122 0.0149 3.1
R(38) 9.180 0.0377 4.0 10.133 0.00162 9.3

('16) 9.189 0.00739 7.0 10.144 0.00125 18.0
P(34) 9.198 0.0212 3.9 10.156 0.00110 34.0
K(32) 9.208 0.0536 3.4 10.168 0.00110 20.0
R(30) 9.217 5.62 5.2 10.180 0.00135 9.2
R(28) 9.227 0.0407 3.7 10.192 0.00139 14.(
R(26) 9.237 0.00996 5.9 10.204 0.00150 16.0
R(24) 9.247 0.00583 7.0 10.217 0.00186 7.8
R(22) 9.258 0.00489 7.3 10.230 0.00257 5.6
R(20) 9.269 0.00514 8.3 10.244 0.00355 4.4
R(18) 9.280 0.0107 5.4 10.258 0.00534 6.6
R(16) 9 . 2 9 1b 1.12 5.4 10.272 0.00995 5.9
R(14) 9.303b 0.0639 3.6 10.286 0.634 4.6
R(12) 9.315 0.0282 4.2 10.301 0.0230 3.7
R(10) 9.327 0.0223 4.2 10.316 0.0542 3.8
R(8) 9.340 0.165 5.00 10 . 3 3 1b 2.05 5.3 -4-
R(6) 9.352 0.0112 1.6 10.346 2.63 5.7
R(4) 9.365 0.0431 6.6 10.362 1.10 6.3
P(4) 9.426 - - 10.438 0.200 4.4
P(6) 9.44 1  0.0143 8.0 10.455 0.0601 3.9
P(8) 9.455 0.00488 10.0 10.473 0.0273 5.0
P(10) 9.470 0.0331 3.6 10.492 0.0207 4.3

P(12) 9 .4 8 6b 0.0965 5.2 1 0. 5 10 b 0.0663 4.4
11(14) 9.501 0.0348 5.5 10 . 5 2 9 b 0.0795 5.3
P(16) 9.517 0.0162 3.2 10.549 0.0541 5.2
P(18) 9.533 0.0230 2.7 10.568 0.0166 5.8
P(20) 9.550 0.293 3.6 10.588 0.0143 1.8
P(22) 9.567 0.0356 5.8 10.603 0.00808 8.8
P(24) 9.584 0.0348 3.4 10.629 0.0140 3.9
P(26) 9.601 0.00917 4.5 10.650 0.0369 3.2
P(28) 9.619 0.00545 6.7 10.672 0.0332 3.9
P(30) 9.637 0.00605 6.3 1 0. 6 9 3 b 0.0922 5.7
P(32) 9.655 0.0260 2.6 10 . 7 16 b 1.37 7.0
P(34) 9.673 0.374 4.4 1 0 73 8 b 1.40 8.3
P(36) 9.692 0.0563 4.5 10.761 0.843 5.3
P(38) 9.711 0.0!44 4.5 10.784 0.421 4.9
P(40) 9.731 0.176 5.5 10.808 0.0950 4.0
P(42) 9.750 0.00965 5.6 10.832 0.0412 3.0

S ahese errors represent the maximum fluctuation in a single measurement.

bAbsorptions at these lines were used to calibrate the spectrophone.
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properties of various common atmospheric particles such as quartz,
calcite, and ammonium sulfate is outlined.

1. First, the particles were finely ground using a mortar and _°
pestle and sifted through a 38-micrometer screen mesh. This process was
repeated numerous times so that large densities of smaller particles
less than 2 micrometer radius were produced. A heat lamp was used to
minimize the particle clumping caused by dampness.

2. The particles were dispersed into a 0.5 cubic-meter chamber
illustrated in figure 7. Approximately 5 minutes after dispersion of
the dust, particles with radii larger than 5 micrometers had settled to
the bottom of the chamber. The particle sizes contributing most to the
absorption were in the range 0.5- to 2-micrometer radius (Bruce et
al' 6).

3. As the finely ground dust settled through the dust spectro-
phone, time decay measurements were taken at selected CO2 laser lines.

4. Particle filter samples were taken at various time intervals to
determine number size densities. Histograms of the number density of
particles versus mean radii were compiled from electron micrographs
reproduced at magnifications of 200X, 50OX, O00OX, and 2000X. From the
interpolated particle density distributions and the index of refraction
of the known particle composition, calculated Mie absorption coeffi-
cients were computed.

5. The absorption contribution due only to the ambient gas in the
chamber as measured by the gas spectrophone was subtracted from the
total gas-plus-particle absorption as measured by the dust spectrophone.

6. Finally, the spectrophone measured absorptions were correlated
with Lorenz-Mie absorption calculations and/or spectrophotometer mea-
surements.

Figure 8 shows spectrophone absorption of quartz (SiO 2 ) as cempared to
Lorenz-Mie calculations at 9.4 to 10.3 micrometers as a function of time
after the dust is introduced into the environmental chamber (Bruce and
Pinnick6 ). The time interval between dust sampling measurements was

`C. W. Bruce, R. J. Brewer, Y. P. Yee, and D. Bruce, 1978, "In-Situ
Spectrophone Measurements of Aerosol Absorption," Third Conference on
Atmospheric Radiation, 28-30 June, American Meteorological Society,
Boston, MA, 227

'C. W. Bruce and R. G. Pinnick, 1977, "In Situ Measurements of Aerosol
Absorption with a Resonant CW Laser Spectrophone," App opt, 16:762-65
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approximately 15 to 20 minutes with continuous opectrophone sampling.
Discrepancies appear between the spectrophone measured and the calcu-
lated absorption coefficients. The settling dust provides a range of
size distributions over which the comparison time dependencies is in
close agreement while the spectral dependence differs by about a factor
of two. However, for the theoretical calculations, the particles were
assumed to be spherical and as seen in figure 9, the particle shapes are
highly irregular and particle density was inhomogeneous. Wbnsidering
the uncertainties in 'the theoretical calculation, the experimental
results are considered to be in good overall agreement.

SClcite (C0 3 ) dust was dispersed into the environmental chamber, but
since it proved to be a very weak and spectrally flat absorber in the 9-
to 11-micrometer wavelength region, it was not studied extensively.
Figure 10 demonstrates' a relative correlation comparison with a segment
of a low resolution spectrophotometer measurement using the potassium
bromide pellet technique. The spectral nature of the calcite in this IR
wavelength region is rather flat with no characteristic structure to its
profile. The actual particle absorption values were well below the
gaseous absorption levels, which accounts for some of the random scatter
in the spectrophone measurements.

Like quartz, ammonium sulfate is a strong absorber in the 9- to
l-micrometer region. The methodology is similar to the previous par-
ticulate aerosols; filter samples were taken 4, 9, 14, 20, and 33
minutes after dust dispersal. The peak absorption contribution came
from approximately 1-micrometer radius particles. Eighty percent of the
total absorption is from particles between 1.3 and 6.3 micrometers in
radius. In figure 11, spectrophone measurements (solid lines) are
plotted with time for the 9.25-micrometer (R-24) CO2 laser line and for
the 10.22-micrometer (R-24) CO2 laser line. Here, there seems to be
more spectral dependence for the spectrophone values than for the cor-

t responding Lorenz-Mie calculations, but there are not enough absorption
points to extrapolate to earlier or later times. The results correlate
very. well for the 9.25-micrometer line falling within a factor of two
although the slopes of the time decay curves differ slightly. For the
10.22-micrometer case, the particle counting statistics for the calcu-
lated absorption coefficients are poor and the calculated absorption
value at 21 minutes after dust dispersal seem to reverse the trend,
opposing that of the spectrophone values. The dust samples at the
various times are collected onto 13 mm diameter 0.2-micrometer Nuclepore
filters, but the electron micrographs are enlargements covering only
about one ten-thousandth of the area from these filters, that is,
approximately 0.016 sq mm out of the 133 sq mm total filter area.
Therefore, electron micrograph enlargements may contain some statisti-
cally poor particle distributions. Also, the actual counting and sizing
of the particles from the micrographs are inexact since the particles
are not uniform or spherical. Figure 12 is a 2000X micrograph enlarge-
ment of ammoniu% sulfate particles; as in quartz, clustering and
irregulatity of particles are predominant. The 10.22-micrometer absorp-
tion dropped quickly toward the ambient gaseous value (also measured
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F~giire 9. Photographic electron microscope enlargements of quartz dust collected
onto Nuclepore filters. The particle samples were taken at times tj, t2,
and t3 corresponding to figure 4. Each photograph contains the geometric

mean radius r 9 and geometric standard deviation a for lognormal size
distribiitions obtained by determining the radii of 4pheres of equivalent
cross ser~tions from SliM phot omicrographs. Also shown are the correspond-
ing aerosol mass loading m, as determined from the lognormal size distri-
buition parameters by us;ing a quartz density of 2.6 g cm-3  The dark
circles are hotes in the Nuc'iepore filter substrate.

22



4- %IPk .' 1 ) IPD I I I 01 '4)l 1 TII%4 1'I ( T214PIIOT(IMFTI IR

- %I9 It)FD) 0IfSPFRt•Is I' AIR W ITH .PFI TROPIIONV

+ + + * .

+- •4 4 ÷ 4 ÷

A 4 -1+ . '! ! . :] ,, j . . .. . .. . ..1 L

9 I~0 " l11 IA I" 0 ICA 1" 1 Il

Figure 10. Relative spectral absorptton coefficients for calcium car-

02

S- SPECTROPONE MEASURENTS

-CALCULATED FROM PARTICLE
COUNTS AND SIZES

z

IL

00

z

0

10 2 2 ±MX

0 4 8 12 1620 2428 32 n 40 4448 52

TIME (min)

Figure 11. Absorption coefficients of ammonium sulfate dust as a func-
tion of time after dispersal, as predicted and measured with
a spectrophone for two wavelengths.
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Figure 12. A 2000X photographic enlargement for ammonium sulfate parti-
cles using a scanning electron microscope.
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usiag : spectrophone) effectively increasing the spectral dependence.
The dust spectrophone measures the total absorption due to both gases
and particles. The gaseous contribution must be subtracted from the
tocal absorption in order to obtain the particle absorption coefficient,
but unless the dust particles are weak IR absorbers, the gaseous absorp-
tion component is negligible compared to the particle absorption
levels. If the particle density in the chamber approaches the ambient
particle densities, the ambient gaseous absorption may cause another
source of error. With these error factors in mind, correlated results
that are several factnrs apart are not unreasonable for these types of
absorption measurements. The wrst agreement for the measured spectro-
phone and the calculated values for ammonium sulfate occurred at 10.22
micrometers where a factor of three difference occurred.

This review of ASL developed spectrophone measurements on known
atmospheric gaseous and particulate absorbers has illustrated the in-
struments' basic suitability for flow through, real-time field applica-
tions. The gaseous absorption measurements at CO2 and/or DF laser
waveleftgths have been strongly substantiated by the best of independent
results, when they have been applicable. As for the particulate absorp-
tion comparisons, reliable theoretical Lorenz-Mie calculations for
irregularly shaped particles are lacking so that assumptions regarding
particle sphericity must be made. The automatic counting and sizing of
small particles is an extremely difficult problem. Many particle mea-
suring instruments such as the forward scattering Knollenberg particle
counter have limitations involving the wavelength of the light source,
knowing the exact response characteristics for each substance, and
assuming the proper index of refraction for each substance. Even simply
collecting the settling dust particles onto filter samples and sizing
printed enlargements of electron micrographs are subject to inaccuracies
and assumptions. Nevertheless, in general, the correlation results
between measured spectrophone values and calculated values for quartz,
calcite, and ammonium sulfate particles appear promising enough to do
actual field absorption measurements in situ.

ON-LINE/OFF-LINE GAS ANALYSIS AT OSCURA PEAK

The first on-line/off-line gas analysis was attempted at Oscura Peak,
WSMR. 1 7  The purpose of this analysis was to determine atmospheric
absorption spectra and gas concentrations at field sites. The gaseous
constituents were sampled at the field and then cryogenically trans-
ported to ASL for analysis. The stainless steel sampling bottles were

pumped and baked to insure a high degree of purity. Before sampling the
field gases, the stainless steel bottles were evacuated and cooled down

1 C. Samuel, C. W. Bruce, and R. J. Brewer, 1978, Spectrophone Analysis
of Gas Samples Obtained at Field Site, ASL-TR-0009, US Army Atmospheric
Sciences Laboratory, White Sands Missile Range, New Mexico 88002
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in a bath of liquid nitrogen. At the field site the evacuated bottles R
were opened to receive the ambient field gases. When returned to the
laboratory, the bottles were allowed to warm up to ambient air tempera-
tures creating a positive pressure differential inside the bottle with
respect to the ambient pressure. The sample gas could then be valved
into a gas spectrophone cell for laboratory measurements described
earlier. This procedure was vetified prior to its use on field gaseous
samples. DF laser lines were used to determine the spectral profile of
eight gas samples and the average absorption of these samples are
plotted in figure 13. Assuming standard pressure and temperature con-
centrations of CO2 and N2, concentrations of water vapor, N2 0, -nd
methane (CH4 ) were computed from the spectrophone measurements. Numer-
ous guess values of the partial pressures or concentrations of the gases
of interest are input into a computer program which calculates a scaling
factor for each of the gases. The total atmospheric absorption for a2
particular laser line frequeacy is calculated and plotted. The program
increments the partial pressures of water by -10, -5, 0, 5, and 10
percent of its input value. At each of these five pressures, the ab-
sorption contribution due to each of the gases under consideration is
calculated subtracted from the measured absorption coefficients. The
resulting residual absorption coefficients are shown by the dashed line
in figure 13, representing unknown gases and impurities within the
system. A summary of concentrations of known constituents for nine gas
samples is tabulated in table 4. Nitrous oxide and methane gas concen-
trations are measured approximately two times higher than the standard
values. The water vapor concentration varies with meteorological mea- -

surements (taken with sling psychrometers and not necessarily at the
same location) but generally the correlation agrees.

FIELD DUST EXPERIMENTS ARKY SITE

Under normal atmospheric conditions, the gaseous contribution to the
total absorption can be as much as several orders of magnitude greater
than the ambient aerosol absorption values. But when dust storms and
severe thunderstorm activity in the field and/or man-made battlefield
disturbances are considered, generated dust particulates in the air
become extremely important as they cause drastic spatial variations of
radiant obscuration.

The culminative spectrophone results in the laboratory are directly
applicable to the in situ 'ield experiments conducted at the Arky Site,
WSMR. A series of dust tests during the period March through June 1978
represent the first in situ field measurements of particulate absorption
using a flow-through spectrophone system. The basic design of the
optics is outlined in figure 14. The CO laser beam passes through a
mechanical chopper at a frequency of 8h hertz; after several beam
splitter and mirror deflections, the beam enters a horizontal gas
spectrophore and a vertical total-absorption spectrophone. A schematic
(figure 15) of the vertically positioned spectrophone shows the aluminum
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TABLE 4. OFF-LINE GAS CONCENTRATION ANALYSIS FOR
NINE SITE SAMPLES AT DF LASER WAVELENGTHS

Water Vapor N20 CH4  N2  C02
(tort) (ppm) (ppm) (torr) (ppm)

Samole * ** * * ***

1 4.75 - 0.462 18.2 600 330

2 3.60 3.20 0.397 4.75 550 330

3 3.57 3.61 0.398 4.26 560 330

4 3.87 2.69 0.748 5.46 500 330

5 2.69 2.69 0.760 4.41 610 330

6 3.53 3.78 0.554 5.49 600 330

7 7.06 5.59 0.472 3.54 600 330

8 5.36 6.20 0.340 3.84 600 330

9 5.04 3.94 0.346 3.79 600 330

j
Concentrations (or partial pressures) of known constituents

* Calculated from spectrophone measurements

•* Obtained from meteorological sources (sling psychrometers)

•*** Assumed
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intake bell (to damp out undesirable wind gusts, reduce particle veloci-
ties, and provide laminar flow through the spectrophone), a microphone
casing which consisted of acoustic wave absorbers and a teflon incased
microphone, a calorimeter, and an outlet valve from which the dust
particles were drawn through the spectrophone's cavity by means of an
air pump. The laser power output was recorded as well as humidity using
a dew point hygrometer. The acoustical signals are electronically
p-ocessed in the same manner as previously mentioned.

An army 3/4-ton vehicle was driven over the desert terrain upwind of the
spectrophone system. A 5 to 10 mph wind with 15 to 20 mph gusts caused
the dust clouds to drift across the measurement instrumentation giving a
profile in each case. The desert terrain was relatively flat although
existing winds frequently changed speed and direction. Tb independently
correlate the spectroprhone measured absorption coefficients, a PMS
"Knollenbeig" particle counter was positioned within 2 meters from the
spectrophone probe. Gaseous absorption was in this case a negligible
fraction of the total measured by the field dust spectrophone and was
thus not separated. Overall, the results of these dust generated runs
(figures 16 to 20) indicate good pattern correlation of the absorption
coefficients versus time although the relative absorption values varied
significantly--a maximum of about 350 km- 1 for the Lorenz-Mie calcula-
tions and 150 km-l for the spectrophone. The peaks of the absorption
coefficients for the Lorenz-Mie predictions and the spectrophone values
may be slightly offset in time because of the spatial distance between
the Knollenberg and the spectrophone as the dust cloud passed each
device. The spectrophone response time was set at about 1 second as
opposed to the 5-second sampling period of the "Knollenberg," thereby
accounting for the more sensitive variations of absorption with time for
the specttophone. For runs 1, 3, 4, and 5, the Lorenz-Mie predictions
are generally a factor of three greater than the spectrophone measure-
ments. Run 2 has high spectrophone absorption peaks that match the
Lorenz-Mie calculation by no worse than a factor of two. In all cases
when the dust cloud appeared to have passed over the instrumentation,
the "Knollenberg" particle counts produced negligible absorption values
(less than I km-') whereas the spectrophone was still measuring the
fluctuating ambient gas levels at the field site and the wind noise (5-7
km 1)*

As the dust clouds swept over the individual probes, substantial spatial
variation of the dust density was noticed. The horizontal position of
the PMS particle counter made it more sensitive to the larger, crosswind
particles than the vertically positioned total absorption spectro-
phone. Tnaccuracies in the complex index of refraction of the dust and
the PM! eliability under heavy dust loading can also contribute to the
amplitu differences between Lorenz-Mie predictions and spectrophone
measure 'ts. Even under ideal spherical particle conditions, errors in
the response characteristics of the "Knollenberg" particle counter can
result in a factor of two or more difference,"' while the spectrophone

absorption values have an estimated probable error of less than 15

J

1OR. G. Pinnick and H. J. Auvermann, 1979, "Response Characteristics of

Knollenberg Light-Scattering Aerosol Counters," J Aerosol Sci, 10:55-74
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Figure 17. Calculated and measured absorption coefficients of vehiculardust at the Arky Site, WSMR (test run 2).
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percent. However, quantitative sampling errors are unknown for both
instruments (functions of the windspeed and wind direction).

CONCLUSION

Spectrophone measurements of gaceous and/or particulate absorption in
the laboratory confirmed the reliability and applicability of ASL devel-
oped spectrophones and provided much of the basis for quantifying atmo-
spheric absorption as a function of gas concentration. For the gaseous
measurements, ozone absorption coefficient comparisons at 300 K and 210
K temperatures for various pressures suggest that AFGL values are about
15 percent low for the strong ozone u3 absorption band coincidences at
9-micrometer GO laser lines. At DF laser lines, methane absorption
agreed well with published White cell results and disagreed with the
thei current predictions. The spectral analysis of ammonia for 9- and
10-micrometer CO2 laser wavelengths at 295 K also produce reasonable
agreement with published White cell results and illustrated problems
with credibility for other results.

Inherent in all the mentioned gas studies was a spectrophone cell with
internal resonant subcavity and filters, both for the purpose of elimi-
nating the "window" noise--the perennial problem of other spectrophone
designs. The microphone unit was constructed of a stainless steel tube
to minimize outgasing and a perforated teflon carrier to minimize extra-
neous noise.

For the particulate spectrophone measurements, quartz, calcite, and
ammoniu:i sulfate were measured in a laboratory controlled, environmental
dust chamber before taking in-situ field measurements. Spectrophone
based results cortelated with calculated results based on particle
counting and sizing agreed within the expected uncertainty of the calcu-
lations (probable variation estimated to be a factor of two) and the
spectrophone uncertainty (estimated maximum 15 percent). Electron
micr-graphs of ammonium sulfate particles display roughly the same
pattern of high irregularity and inhomogeneity of particle sizes bnd
distribution as for quartz dust. Agreement between measured results and
theory again is found to be within expected limits for the
9.25-micrometer CO laser line. At 10.22 micrometers, the Lorenz-Mie A
absorption coefficient at 21 minutes after dust dispersal is abnormally
higher than spectrophone by a factor of four, but the sample area from
which the electron micrographs are produced is only one ten-thousandths
of the total particle filter area so that the statistics may have been
poor. Clcite proved to be a very weak and spectrally flat absorber in
the 9- and 10-micrometer wavelength region as measured by both
spectrophone and spectrophotometer.
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A program to measure atmospheric gaseous constituents in an
on-line/off-line spectrophone analysis for DF laser wavelengths was
conducted at Oscura Peak, WSMR. Concentrations for the major atmo-
spheric absorbers at these wavelengths (i.e., water vapor, methane, and
nitrous oxide) were measured and found to be roughly a factor of two
higher than predictions but water vapor was in close agreement with
expectations based on known absorption coefficients and measured rela-
tive humidity. Impurities and unknown gases are recognized by the
Sresidual level of the absorption after contributions of methane, water
vapor, and N2 0 are subtracted from the total spectrophone measured
absorption. The feasibility of applying this on-line/off-line gas
analysis using cryogenic sampling technique at DF and other laser wave-
lengths looks very promising though impurities are likely to be intro-
duced unless great care is taken. Unstable species are not candidates
for this technique.

A series of field dust tests were conducted at the Arky Site, WSMR, in
which relatively large particles were lofted by a running vehicle. A
specially designed laminar flow through spectrophone was used and the
results were compared to Lorenz-Mie calculations of Knollenberg particle
distributions. Preliminary results indicate good pattern correlation
although the average amplitudes of the Lorenz-Mie absorption values are
approximately three times as high as the corresponding spectrophone
measurements. The combined errors of the two measurements as presented
in the text represent a factor between two and three. However, other
problems not currently quantified (such as sampling efficiencies and
uncertainties in the complex index) may explain the differences.

After demonstrating consistently good agreement in the laboratory be-
tween spectrophone measured quantities and other independent methods of
measurements, absorption tests were conducted at Oscura Peak and then in
the field at Arky Site, WSMR, to determine the feasibility of using
field designed spectrophones. The measured spectrophone values for the
gases, for both on-line/off-line and in-situ field cases were generally
higher than the expected ambient values (except for the major trace
constituent, water vapor) while the spectrophone values for the partic-
ulates were generally lower than Lorenz-Mie calculations, though highly
correlated in fluctuations. Field and laboratory systems continue to
quantify, in-situ, gaseous and particulate obscuration of military
environments and to correlate these results with obocurant source densi-
ties.
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